Η χρησιμότητα και η επικαιρότητα ενός έργου γενικής εισαγωγής στη Λογική είναι αναμφίβολες και το παρόν βιβλίο έρχεται στην ώρα του. Προϊόν διδασκαλίας στο μεταπτυχιακό (D.E.A.) Λογικής και Θεμελίων της Πληροφορικής του Πανεπιστημίου Paris 7, καλύπτει ευρύ πανόραμα: άλγεβρα Boole, Αναδρομικότητα, Θεωρία Μοντέλων, Θεωρία Συνόλων, Μοντέλα της Αριθμητικής και Θεωρήματα του Godel.
Η έννοια του μοντέλου είναι κεντρικό στοιχείο του κειμένου και εντελώς δικαιολογημένα, καθώς κατέχει επίσης κεντρική θέση στη Λογική. Παρά τον (ή χάρις στον) απλό και σχεδόν στοιχειώδη χαρακτήρα της, φωτίζει όλα τα πεδία, ακόμη και όσα φαίνονται πολύ απομακρυσμένα. Πώς να καταλάβουμε, επί παραδείγματι, μια απόδειξη συνεπείας στη Θεωρία συνόλων χωρίς να έχουμε ήδη αφομοιώσει την έννοια ενός μοντέλου αυτής της θεωρίας; Πώς να κατανοήσουμε το Θεώρημα του Godel χωρίς κάποια ιδέα για τα μη καθιερωμένα μοντέλα της Αριθμητικής του Peano: Ο πλήρης έλεγχος αυτών των σημασιολογικών εννοιών είναι κατά τη γνώμη μου, χαρακτηριστικό μιας πραγματικής μαθητείας στον τομέα της Λογικής σε οποιοδήποτε επίπεδο. Ο R. Cori και ο D. Lascar το ξέρουν πολύ καλά και το βιβλίο τους ακολουθεί ακριβώς αυτή την κατεύθυνση. Επιπλέον, αντεπεξήλθαν με επιτυχία στην πρόκληση να συνδυάσουν όλη την απαραίτητη αυστηρότητα με την ευκρίνεια, την παιδαγωγική μέριμνα και την τέρψη της ανάγνωσης.
Έχουμε λοιπόν στη διάθεσή μας ένα εξαιρετικό εργαλείο διδασκαλίας της Μαθηματικής Λογικής και, δεδομένης της ανάπτυξης της ζήτησης για το θέμα, θα πρέπει να γνωρίσει μεγάλη επιτυχία. Το εύχομαι ολόψυχα. (Απόσπασμα από τον πρόλογο του Jean-Louis Krivine)